
	

Continue

https://feedproxy.google.com/~r/Uplcv/~3/FevRqgeaUVY/uplcv?utm_term=angular+8+full+tutorial+pdf

Angular	8	full	tutorial	pdf

All	you	need	to	learn	about	Angular,	the	best	tips	and	free	code	examples	so	you	can	get	the	most	out	of	Angular.	60	Min	READ!	Angular	MaterialBeginnersFormsAngular	CLI	Let	me	introduce	you	to	Angular	Angular	is	a	platform	for	building	mobile	and	desktop	web	applications.	It	has	a	big	community	of	millions	of	developers	who	choose	Angular	to
build	compelling	user	interfaces.	Angular	is	a	JavaScript	open-source	front-end	web	application	framework.	It	is	primarily	sustained	by	Google	together	with	an	extended	community	of	people	and	companies.	Angular	solves	many	of	the	challenges	faced	when	developing	single	page,	cross	platform,	performant	applications.	It's	fully	extensible	and
works	very	well	with	other	libraries.	For	additional	details	visit	their	official	documentation	page.	My	goal	in	this	Angular	real	world	example	tutorial	is	to	provide	a	complete	guide	for	you	to	learn	Angular	step	by	step.	We	will	start	explaining	the	why's	and	basic	concepts	and	then	continue	exploring	more	advanced	notions.	We	want	to	help	beginners
through	their	first	steps	on	the	Angular	world.	As	developers,	we	know	that	starting	with	a	new	technology	can	sometimes	be	a	bit	frustrating	so	want	to	help	here.	We	will	learn	enough	core	Angular	to	get	started	and	gain	confidence	that	we	can	build	any	kind	of	app	with	Angular.	We	will	be	covering	a	lot	of	ground	at	an	introductory	level,	but	also,
you	will	find	plenty	of	references	to	topics	with	greater	depth.	To	help	you	through	your	Angular	learning	process,	we	created	an	Angular	app	with	a	question	and	answer	format	(Q&A),	where	users	will	be	able	to	ask,	answer	and	vote	questions.	Also,	we	will	explain	how	to	connect	this	app	with	a	remote	API	to	handle	data	integration.	So,	in	this
complete	tutorial	you	will	learn	all	the	concepts	needed	to	create	your	first	angular	application.	You	can	download	all	the	source	code	of	this	angular	free	template	by	clicking	the	GET	THE	CODE	button	from	above.	Also,	we	published	an	online	demo	of	the	app	we	are	going	to	build	in	this	Getting	Started	with	Angular	guide.	Our	journey	with	Angular
We	began	testing	and	experimenting	with	the	very	first	release	of	Angular	2.0.0-beta.0	on	december	2015	with	hopes	of	finding	a	framework	that	was	clearly	better	than	its	predecessor	(Angular	1.x	also	know	as	AngularJS).	I'm	going	to	be	completely	honest	with	you	here,	we	almost	give	up	with	all	the	inconsistency,	breaking	changes	and	a	sort	of
identity	crisis	that	happened	in	the	middle	of	the	Angular	2+	development.	It	was	a	long	way	until	Angular	reached	a	solid	milestone	with	Universal	(server-side	rendering),	ahead-of-time	compilation	(AOT),	lazy	loading	and	a	solid	bundling	config	working	together	nicely.	Back	in	those	years	it	was	not	easy	to	create	a	production	ready	angular
application.	But	thanks	to	the	angular	team	and	to	the	angular	community,	that	changed.	Amazing	things	can	be	created	with	the	latest	versionss	of	Angular.	You	can	check	our	most	recent	creation	with	Angular	latest	version	in	Fully	-	Angular	Admin	Template	Being	working,	using	and	trying	things	out	with	Angular	from	the	very	beginning	made	us
really	understand	the	way	it	was	designed	and	how	it	evolved.	We	were	witnesses	of	the	constant	improvements	and	saw	how	they	were	all	aligned	to	one	simple	yet	important	goal:	"Creating	an	app	wit	Angular	should	be	easy".	As	I	mentioned	before,	for	some	time	during	the	process,	it	wasn't.	Now	I	can	tell	you,	Angular	is	a	super	solid	and	stable
framework	you	will	love	to	work	with.	Current	versions	of	Angular	had	evolved	to	the	point	where	you	will	be	quickly	impressed.	Angular	is	a	great	tool	that	will:	Enable	you	to	create	software	quicker	and	with	less	effort	Result	in	a	more	maintainable	software	Encourage	good	programming	practices	and	design	patterns	like	MVC	Allow	you	to
collaborate	easier	with	other	people	Allow	you	to	become	proficient	in	a	reasonable	time	Address	problems	that	may	arise	in	your	software	architecture	such	as	Dependency	Injection,	DRY	(Don't	Repeat	Yourself),	etc	Differences	between	Angular	versions	When	it	all	started,	back	in	2010,	this	framework	was	called	AngularJS,	and	alludes	to	what	we
now	know	as	Angular	1.x.	Then	in	2016,	Angular	2	arrived	as	a	complete	rewrite	of	the	framework,	improving	from	lessons	learned	and	promising	performance	improvements,	and	a	more	scalable	and	more	modern	framework.	AngularJS	was	completely	based	on	controllers	and	the	view	communicates	using	$scope	whereas	Angular	2	is	100%	a
component-based	approach.	In	Angular	2,	we	don't	have	anymore	the	controllers	and	$scope.	Components	are	the	building	blocks	of	an	Angular	2	app.	We	will	see	the	benefits	of	this	change	in	a	few	minutes.	The	first	version	of	Angular	was	named	Angular	2.	Later	on,	it	was	renamed	to	"Angular".	Between	Angular	2	and	Angular	10	(the	current	latest
stable	version)	there	was	Angular	4	(released	early	2017),	Angular	5	(released	late	2017),	Angular	6	(released	early	2018),	Angular	7	(released	late	2018),	Angular	8	(released	mid	2019),	Angular	9	(released	early	2020).	Angular	10	was	released	on	June	2020.	All	the	information	related	to	versions	can	be	found	on	the	CHANGELOG.	Don't	freak	out
will	all	these	versions.	Because	all	versions	from	Angular	2	to	Angular	10	are	the	same	framework,	they	share	the	same	core	but	they	differ	in	lots	of	amazing	improvements!	From	now	on,	every	time	we	use	the	term	Angular	we	are	referring	to	the	latest	version	of	the	framework	that	currently	is	Angular	10.	What's	new	in	Angular	compared	to
AngularJS	Just	for	the	sake	of	history,	let's	go	through	the	main	differences	between	AngularJS	and	Angular:	Angular	is	a	complete	rewrite	of	AngularJS.	An	Angular	application	and	its	architecture	are	different	from	AngularJS.	The	main	building	elements	for	Angular	are	modules,	components,	templates,	metadata,	data	binding,	directives,	services
and	dependency	injection.	Angular	does	not	have	a	"scope"	concept	or	controllers,	instead,	it	uses	a	component	hierarchy	as	its	main	architecture.	Angular	follows	a	modularity	concept.	Similar	functionalities	are	kept	together	inside	modules.	This	gives	Angular	an	optimized	lighter	core.	The	controller	concept,	which	was	present	in	AngularJS,	was
removed	from	Angular	2	and	above	which	are	component	based	UI.	This	help	developers	divide	applications	in	components	with	desired	features.	These	helped	improve	the	flexibility	and	reusability	compared	to	AngularJS.	Angular	expression	syntax	is	focused	on	"[]"	for	property	binding,	and	"()"	for	event	binding.	With	AngularJS,	building	a	search
engine	(SEO)	friendly	Single	Page	Application	was	a	major	difficulty.	But	this	bottleneck	was	eliminated	with	Angular	2	by	enabling	application	rendering	in	the	server.	These	tasks	are	possible	thanks	to	the	Angular	Universal	module.	Angular	recommends	using	the	TypeScript	language,	which	introduces	these	features:	Static	Typing	Object	Oriented
Programming	based	on	classes	Support	reactive	programming	using	RxJS	On	top	of	TypeScript	features,	Angular	also	includes	the	benefits	taken	from	ES6:	For/Of	loops	Improved	dependency	injection	Iterators	Reflection	Dynamic	loading	Asynchronous	template	compilation	Simpler	Routing	From	Angular	2	to	Angular	4	There	were	some	major
changes,	but	mostly	on	the	project	structure	with	lots	of	refactors	that	made	the	framework	more	stable.	Smaller	and	faster.	The	upgrade	from	2.0	to	4.0	has	reduced	the	bundled	file	size	by	60%	while	also	improving	the	applications	speed.	Angular	4	is	compatible	with	newer	versions	of	TypeScript	2.1	and	TypeScript	2.2.	Angular	Universal:	The	vast
majority	of	the	Angular	Universal	code	has	been	merged	into	Angular	core.	Animation	Package:	Animations	taken	from	the	Angular	core	and	set	within	their	own	package.	Meaning	that	if	you	don't	use	animations,	the	excess	code	won't	end	up	in	your	app.	From	Angular	5	to	Angular	7	Angular	6	was	the	first	release	of	Angular	that	unifies	the	versions
of	Framework,	Material	and	CLI.	This	change	was	made	to	clarify	cross	compatibility.	Angular	7	was	full	of	new	features,	bug	fixes,	performance	improvements,	and	some	code	deprecation	as	a	clean	up	of	the	refactors	from	old	versions.	Optimizations	to	the	build	process	that	reduces	the	application	size	by	removing	unnecessary	code.	Material
Design	components	with	server-side	rendering.	Angular	Universal	improvements	for	code	allocation	between	the	server	and	client-side	versions	of	the	application.	Lots	of	improvements	in	the	Angular	CLI	Smaller	bundle	sizes	Improved	compiler	that	supports	incremental	compilation	meaning	faster	rebuilds.	RxJS	(reactive	programming	library)	has
been	updated	to	version	6.x	or	later.	Angular	now	requires	TypeScript	3.x	From	Angular	8	to	Angular	10+	Angular	8	was	a	release	that	spanned	the	entire	platform,	including	the	framework,	Angular	Material,	and	the	CLI.	This	release	improved	application	startup	time	on	modern	browsers.	Also	it	changed	the	route	configurations	to	use	dynamic
imports	in	favour	of	lazy	loading.	Angular	9	was	very	expected	by	the	community	because	it	introduced	the	Ivy	compiler	and	runtime.	Ivy	is	the	name	for	Angular's	next-generation	compilation	and	rendering	pipeline.	With	this	release,	the	new	compiler	and	runtime	instructions	are	used	by	default	instead	of	the	older	compiler	and	runtime,	known	as
View	Engine.	The	Ivy	compiler	offers	the	following	advantages:	Smaller	bundle	sizes	Faster	testing	Better	debugging	Improved	CSS	class	and	style	binding	Improved	type	checking	Improved	build	errors	Improved	build	times,	enabling	AOT	on	by	default	Improved	Internationalization	More	information	about	these	advantages	can	be	found	on	Angular
9	release	note.	Angular	10	release	was	smaller	than	typical;	it	has	only	been	4	months	since	the	release	of	Angular	9.	More	info	about	this	release	can	be	found	here.	Moving	ahead	in	this	Angular	tutorial,	let's	setup	the	development	environment.	After	the	previous	introduction	about	the	current	state	of	the	Angular	Framework,	we	are	now	ready	to
get	started	working	on	our	angular	app.	The	best	way	to	learn	Angular	is	by	following	this	step	by	step	tutorial	for	beginners.	In	the	following	section	of	this	angular	free	course	we	will	go	through	the	setup	and	requirements	needed	to	start	developing	Angular	apps.	Let's	start	building	a	complete	web	app	sample	project	with	Angular	Setup	the
Angular	development	environment	In	this	section	we	will	show	you	how	to	setup	your	local	development	environment	so	you	can	start	developing	Angular	apps.	A	real	application	development	happens	in	a	local	development	environment	that	could	be	your	personal	machine.	Follow	our	setup	instructions	to	create	a	new	Angular	project.	Angular
requirements:	Install	NodeJS	and	npm	Node.js	and	npm	are	fundamental	to	modern	web	development	using	Angular	and	other	platforms.	Node	empowers	client	development	and	build	tools.	We	are	gonna	use	the	node	package	manager	(npm)	to	install	all	the	JavaScript	libraries	dependencies.	Get	these	right	now	if	they're	not	installed	on	your
computer.	Note:	Verify	that	you	are	running	the	latest	stable	versions	of	node	and	npm.	The	Angular	CLI	Angular	apps	are	created	and	developed	primarily	through	the	Angular	CLI	(command	line	interface	tool)	that	helps	project	creation,	adding	files,	and	performing	a	variety	of	ongoing	development	tasks	such	as	testing,	bundling,	and	deployment.
The	Angular	CLI	takes	care	of	configuration	and	initialization	of	various	libraries.	It	also	helps	us	adding	components,	directives,	services,	etc,	to	already	existing	Angular	applications.	It's	also	worth	mentioning	that	the	CLI	uses	Typescript	and	Webpack	for	module	bundling,	Karma	for	unit	testing,	and	Protractor	for	an	end	to	end	testing.	It	includes
everything	you	need	to	start	writing	your	Angular	application	right	away.	To	install	the	Angular	CLI	globally,	run	the	following	command	on	your	console	npm	install	-g	@angular/cli	Note:	although	it's	not	recommended,	you	may	need	to	add	"sudo"	in	front	of	these	commands	to	install	the	utilities	globally.	Important	note:	If	you	have	an	older	version
of	the	CLI	installed	in	your	computer,	make	sure	you	properly	update	it	to	the	latest	Angular	CLI.	Now	that	you	have	Angular	and	its	dependencies	installed,	we	can	move	on	and	start	building	our	Angular	app.	Let's	get	started!	Starting	a	new	angular	app	with	the	CLI	is	easy!	From	your	command	line,	run	this	command:	ng	new	"my-new-angular-
app"	The	command	above	will	create	a	folder	named	"my-new-angular-app"	and	will	copy	all	the	required	dependencies	and	configuration	settings.	The	Angular	CLI	does	this	for	you:	Creates	a	new	directory	"my-new-angular-app"	Downloads	and	installs	Angular	libraries	and	any	other	dependencies	Installs	and	configures	TypeScript	Installs	and
configures	Karma	&	Protractor	(testing	libraries)	You	can	also	use	the	ng	init	command.	The	difference	between	ng	init	and	ng	new	is	that	ng	new	requires	you	to	specify	the	folder	name	and	it	will	create	a	folder	copying	the	files	while	ng	init	will	copy	the	files	to	the	current	folder.	Now,	you	can	cd	into	the	created	folder.	To	get	a	quick	preview	of
your	app	inside	the	browser,	use	the	serve	command	use	ng	serve	This	command	runs	the	compiler	in	watch	mode	(looks	for	changes	in	the	code	and	recompiles	if	needed),	starts	the	server,	launches	the	app	in	a	browser,	and	keeps	the	app	running	while	we	continue	building	it.	The	Webpack	Development	server	listens	on	HTTP	port	4200.	Hence,	if
you	open	the	url	you	will	see	the	app	running.	Using	the	Angular	CLI	to	add	new	pages	In	Angular,	there's	some	more	boilerplate	compared	to	AngularJS	(Angular	1),	but	don't	panic.	The	new	Angular	CLI	also	has	more	tools	to	help	you	out	with	this.	For	example,	the	new	generator	functions.	They	provide	an	easy	way	to	create	angular	pages	and
services	for	your	app.	This	makes	going	from	a	basic	app	to	a	full	featured	navigation	web	app	much	easier.	I	call	that	an	easy	learning	curve	:).	To	create	a	new	component	you	can	use	the	following	command:	ng	generate	component	my-new-component	ng	g	component	my-new-component	#	using	the	alias	√	Create	app/pages/my-page/my-page.html
√	Create	app/pages/my-page/my-page.ts	√	Create	app/pages/my-page/my-page.scss	The	angular-CLI	will	add	a	reference	to	components,	directives	and	pipes	automatically	in	the	app.module.ts.	Note:	Please	refer	to	angular	CLI	documentation	for	more	information	about	adding	components	and	other	elements	to	your	app.	Angular	is	a	framework
designed	to	build	single	page	applications	(SPAs)	and	most	of	its	architecture	design	is	focused	towards	doing	that	in	an	effective	manner.	Single-page	application	(or	SPA)	are	applications	that	are	accessed	via	web	browser	like	other	websites	but	offer	more	dynamic	interactions	resembling	native	mobile	and	desktop	apps.	The	most	notable
difference	between	a	regular	website	and	SPA	is	the	reduced	amount	of	page	refreshes.	Typically,	95	percent	of	SPA	code	runs	in	the	browser;	the	rest	works	in	the	server	when	the	user	needs	new	data	or	must	perform	secured	operations	such	as	authentication.	As	a	result,	the	process	of	page	rendering	happens	mostly	on	the	client-side.	Angular
Modules	Modules	help	organize	an	application	into	cohesive	functionality	blocks	by	wrapping	components,	pipes,	directives,	and	services.	They	are	just	all	about	developer	ergonomics.	Angular	applications	are	modular.	Every	Angular	application	has	at	least	one	module—	the	root	module,	conventionally	named	AppModule.	The	root	module	can	be	the
only	module	in	a	small	application,	but	most	apps	have	many	more	modules.	As	the	developer,	it's	up	to	you	to	decide	how	to	use	the	modules.	Typically,	you	map	major	functionality	or	a	feature	to	a	module.	Let's	say	you	have	four	major	areas	in	your	system.	Each	one	will	have	its	own	module	in	addition	to	the	root	module,	for	a	total	of	five	modules.
Any	angular	module	is	a	class	with	the	@NgModule	decorator.	Decorators	are	functions	that	modify	JavaScript	classes.	They	are	basically	used	for	attaching	metadata	to	classes	so	that	it	knows	the	configuration	of	those	classes	and	how	they	should	work.	The	@NgModule	decorator	properties	that	describe	the	module	are:	declarations:	The	classes
that	belong	to	this	module	and	are	related	to	views.	There	are	three	classes	in	Angular	that	can	contain	views:	components,	directives	and	pipes.	exports:	The	classes	that	should	be	accessible	to	other	modules	components.	imports:	Modules	whose	classes	are	needed	by	the	components	of	this	module.	providers:	Services	present	in	one	of	the	modules
which	are	going	to	be	used	in	the	other	modules	or	components.	Once	a	service	is	included	in	the	providers,	it	becomes	accessible	in	all	parts	of	that	application.	bootstrap:	The	root	component	which	is	the	main	view	of	the	application.	Only	the	root	module	has	this	property	and	it	indicates	the	component	that's	gonna	be	bootstrapped.
entryComponents:	An	entry	component	is	any	component	that	Angular	loads	imperatively,	(which	means	you're	not	referencing	it	in	the	template),	by	type.	Angular	Components	Components	are	the	most	basic	building	block	of	an	UI	and	Angular	applications.	A	component	controls	one	or	more	sections	on	the	screen	(what	we	call	views).	For	example
in	this	example	we	have	components	like	AppComponent	(the	bootstrapped	component),	CategoriesComponent,	CategoryQuestionsComponent,	QuestionAnswersComponent	etc.	A	component	is	self	contained	and	represents	a	reusable	piece	of	UI	that	is	usually	constituted	by	three	important	things:	A	piece	of	html	code	that	is	known	as	the	view	A
class	that	encapsulates	all	available	data	and	interactions	to	that	view	through	an	API	of	properties	and	methods	architectured	by	Angular.	Here's	where	we	define	the	application	logic	(what	it	does	to	support	the	view)	And	the	aforementioned	html	element	also	known	as	selector.	Using	the	Angular	@Component	decorator	we	provide	additional
metadata	that	determines	how	the	component	should	be	processed,	instantiated	and	used	at	runtime.	For	example	we	set	the	html	template	related	to	the	view,	then,	we	set	the	html	selector	that	we	are	going	to	use	for	that	component,	we	set	stylesheets	for	that	component.	The	Component	passes	data	to	the	view	using	a	process	called	Data	Binding.
This	is	done	by	Binding	the	DOM	Elements	to	component	properties.	Binding	can	be	used	to	display	property	values	to	the	user,	change	element	styles,	respond	to	an	user	event,	etc.	A	component	must	belong	to	an	NgModule	in	order	for	it	to	be	usable	by	another	component	or	application.	To	specify	that	a	component	is	a	member	of	an	NgModule,
you	should	list	it	in	the	declarations	property	of	that	NgModule.	One	side	note	on	the	components	importance	from	a	point	of	software	architecture	principles:	It's	super	important	and	recommended	to	have	separate	components,	and	here's	why.	Imagine	we	have	two	different	UI	blocks	in	the	same	component	and	in	the	same	file.	At	the	beginning,
they	may	be	small	but	each	could	grow.	We	are	sure	to	receive	new	requirements	for	one	and	not	the	other.	Yet	every	change	puts	both	components	at	risk	and	doubles	the	testing	burden	without	any	benefits.	If	we	had	to	reuse	some	of	those	UI	blocks	elsewhere	in	our	app,	the	other	one	would	be	glued	along.	That	scenario	violates	the	Single
Responsibility	Principle.	You	may	think	this	is	only	a	tutorial,	but	we	need	to	do	things	right	—	especially	if	doing	them	right	is	easy	and	we	learn	how	to	build	Angular	apps	in	the	process.	Angular	encourages	this	principle	by	having	each	patch	of	the	page	controlled	with	it's	own	component.	A	typical	Angular	application	looks	like	a	tree	of
components.	The	following	diagram	illustrates	this	concept.	Note	that	the	modal	components	are	on	the	side	of	the	parent	component	because	they	are	imperative	components	which	are	not	declared	on	the	component	html	template.	Angular	building	blocks:	Templates	Templates	are	used	to	define	a	component	view.	A	template	looks	like	regular
HTML,	but	it	also	has	some	differences.	Code	like	*ngFor,	{{hero.name}},	(click),	and	[hero]	uses	Angular	template	syntax	to	enhance	HTML	markup	capabilities.	Templates	can	also	include	custom	components	like	in	the	form	of	non-regular	html	tags.	These	components	mix	seamlessly	with	native	HTML	in	the	same	layouts.	Angular	building	blocks:
Services	Almost	anything	can	be	a	service,	any	value,	function,	or	feature	that	your	application	needs.	A	service	is	typically	a	class	with	a	narrow,	well-defined	purpose.	It	should	do	something	specific	and	do	it	well.	The	main	purpose	of	Angular	Services	is	sharing	resources	across	components.	Take	Component	classes,	they	should	be	lean,
component's	job	is	to	enable	the	user	experience	(mediate	between	the	view	and	the	application	logic)	and	nothing	more.	They	don't	fetch	data	from	the	server,	validate	user	input,	or	log	directly	to	the	console.	They	delegate	such	tasks	and	everything	nontrivial	to	services.	Services	are	fundamental	to	any	Angular	application,	and	components	are	big
consumers	of	services	as	they	help	them	being	lean.	The	scenario	we've	just	described	has	a	lot	to	do	with	the	Separation	of	Concerns	principle.	Angular	doesn't	enforce	these	principles,	but	it	helps	you	follow	these	principles	by	making	it	easy	to	structure	your	application	logic	into	services	and	make	those	services	available	to	components	through
dependency	injection.	In	our	example	app	we	have	three	services:	AnswersService,	QuestionsService,	CategoriesService.	Each	of	them	has	only	the	functions	related	to	them.	In	this	specific	tutorial	we	will	only	focus	on	CategoriesService	and	in	the	following	parts	we	will	discuss	the	others.	CategoriesService	has	the	following	methods:	//gets	all	the
question	categories	from	a	local	json	getCategories(){	return	this.http.get("./assets/categories.json")	.map((res:any)	=>	res.json())	.toPromise();	}	//finds	a	specific	category	by	slug	getCategoryBySlug(slug:	string){	return	this.getCategories()	.then(data	=>{	return	data.categories.find((category)	=>	{	return	category.slug	==	slug;	});	})	}	Angular
building	blocks:	Other	resources	External	resources	like	Databases,	API's,	etc,	are	fundamental	as	they	will	enable	our	app	to	interact	with	the	outside	world.	There's	much	more	to	cover	about	the	basic	building	blocks	of	Angular	applications	like	Dependency	Injection,	Data	Binding,	Directives,	etc.	You	can	find	these	and	much	more	information	in
our	upcoming	post	about	"Angular:	The	learning	path".	Now,	let's	go	deeper	and	map	the	project	structure	to	the	app's	architecture	so	we	can	understand	better	how	all	the	pieces	interact	with	each	other.	After	following	the	setup	instructions	for	creating	a	new	project	in	the	previous	section,	let's	walk	through	the	anatomy	of	our	Angular	app.	The	cli
setup	procedures	install	lots	of	different	files.	Most	of	them	can	be	safely	ignored.	In	the	project	root	we	have	three	important	folders	and	some	important	files:	/src/	This	is	the	most	important	folder.	Here	we	have	all	the	files	that	make	our	Angular	app.	/e2e/	This	folder	is	for	the	End-to-end	tests	of	the	application,	written	in	Jasmine	and	run	by	the
protractor	e2e	test	runner.	Please	note	that	we	will	not	enter	in	details	about	testing	in	this	post.	nodemodules/	The	npm	packages	installed	in	the	project	with	the	npm	install	command.	package.json	As	every	modern	web	application,	we	need	a	package	system	and	package	manager	to	handle	all	the	third-party	libraries	and	modules	our	app	uses.
Inside	this	file,	you	will	find	all	the	dependencies	and	some	other	handy	stuff	like	the	npm	scripts	that	will	help	us	a	lot	to	orchestrate	the	development	(bundling/compiling)	workflow.	tsconfig.json	Main	configuration	file.	It	needs	to	be	in	the	root	path	as	it's	where	the	typescript	compiler	will	look	for	it.	Inside	of	the	/src	directory	we	find	our	raw,
uncompiled	code.	This	is	where	most	of	the	work	for	your	Angular	app	will	take	place.	When	we	run	ng	serve,	our	code	inside	of	/src	gets	bundled	and	transpiled	into	the	correct	Javascript	version	that	the	browser	understands	(currently,	ES5).	That	means	we	can	work	at	a	higher	level	using	TypeScript,	but	compile	down	to	the	older	form	of
Javascript	that	the	browser	needs.	Under	this	folder	you	will	find	two	main	folder	structures.	/app	has	all	the	components,	modules,	pages	you	will	build	the	app	upon.	/environments	this	folder	is	to	manage	the	different	environment	variables	such	as	dev	and	prod.	For	example	we	could	have	a	local	database	for	our	development	environment	and	a
product	database	for	production	environment.	When	we	run	ng	serve	it	will	use	by	default	the	dev	env.	If	you	like	to	run	in	production	mode	you	need	to	add	the	--prod	flag	to	the	ng	serve.	index.html/	It's	the	app	host	page	but	you	won't	be	modifying	this	file	often,	as	in	our	case	it	only	serves	as	a	placeholder.	All	the	scripts	and	styles	needed	to	make
the	app	work	are	gonna	be	injected	automatically	by	the	webpack	bundling	process,	so	you	don't	have	to	do	this	manually.	The	only	thing	that	comes	to	my	mind	now,	that	you	may	include	in	this	file,	are	some	meta	tags	(but	you	can	also	handle	these	through	Angular	as	well).	And	there	are	other	secondary	but	also	important	folders	/assets	in	this
folder	you	will	find	images,	sample-data	json's,	and	any	other	asset	you	may	require	in	your	app.	Angular	best	practices:	The	app	folder	This	is	the	core	of	the	project.	Let's	have	a	look	at	the	structure	of	this	folder	so	you	get	an	idea	where	to	find	things	and	where	to	add	your	own	modules	to	adapt	this	project	to	your	particular	needs.	/shared	The
SharedModule	that	lives	in	this	folder	exists	to	hold	the	common	components,	directives,	and	pipes	and	share	them	with	the	modules	that	need	them.	It	imports	the	CommonModule	because	its	component	needs	common	directives.	You	will	notice	that	it	re-exports	other	modules.	If	you	review	the	application,	you	may	notice	that	many	components
requiring	SharedModule	directives	also	use	NgIf	and	NgFor	from	CommonModule	and	bind	to	component	properties	with	[(ngModel)],	a	directive	in	the	FormsModule.	Modules	that	declare	these	components	would	have	to	import	CommonModule,	FormsModule,	and	SharedModule.	You	can	reduce	repetition	by	having	SharedModule	re-export
CommonModule	and	FormsModule	so	that	importers	of	SharedModule	get	CommonModule	and	FormsModule	for	free.	SharedModule	can	still	export	FormsModule	without	listing	it	among	its	imports.	/styles	Here	you	will	find	all	the	variables,	mixins,	shared	styles,	etc,	that	will	make	your	app	customizable	and	extendable.	Maybe	you	don't	know
Sass?	Briefly,	it	is	a	superset	of	css	that	will	ease	and	speed	your	development	cycles	incredibly.	/services	Here	you	will	find	all	the	services	needed	in	this	app.	Each	service	has	only	the	functions	related	to	it.	Other	folders	To	gain	in	code	modularity,	we've	created	a	folder	for	each	component.	Within	those	folders	you	will	find	every	related	file	for	the
pages	included	in	that	component.	This	includes	the	html	for	the	layout,	sass	for	the	styles	and	the	main	page	component.	app.component.html	This	serves	as	the	skeleton	of	the	app.	Typically	has	a	to	render	the	routes	and	their	content.	It	can	also	be	wrapped	with	content	that	you	want	to	be	in	every	page	(for	example	a	toolbar).	app.component.ts
It's	the	Angular	component	that	provides	functionality	to	the	app.component.html	file	I	just	mentioned	about.	app-routing.module.ts	Here	we	define	the	main	routes.	These	routes	are	registered	to	the	Angular	RouterModule	in	the	AppModule.	If	you	use	lazy	modules,	child	routes	of	other	lazy	modules	are	defined	inside	those	modules.	app.module.ts
This	is	the	main	module	of	the	project	which	will	bootstrap	the	app.	As	we	advance	in	this	tutorial	we	will	be	creating	more	pages	and	perform	basic	navigation.	A	little	more	about	the	navigation	Angular	has	a	specific	module	dedicated	to	navigation	and	routing,	the	RouterModule.	With	this	module	you	can	create	routes,	which	allows	you	to	move
from	one	part	of	the	application	to	another	part	or	from	one	view	to	another.	For	routes	to	work,	you	need	an	anchor	or	element	in	the	UI	to	map	actions	(typically	clicks	on	elements)	to	routes	(URL	paths).	We	use	the	routerLink	directive	for	this	purpose.	For	example,	when	the	user	clicks	on	a	Category	name	in	the	UI,	Angular,	through	the
routerLink	directive,	knows	that	it	needs	to	navigate	to	the	following	url:	{{category.title}}	Next,	you'll	need	to	map	the	URL	paths	to	the	components.	In	the	same	folder	as	the	root	module,	create	a	config	file	called	app.routes.ts	(if	you	don't	have	one	already)	with	the	following	code.	import	{	Routes	}	from	'@angular/router';	export	const	routes:
Routes	=	[{	path:	'',	component:	CategoriesComponent,	resolve:	{	data:	CategoriesResolver	}	},	{	path:	'questions/about/:categorySlug',	component:	CategoryQuestionsComponent,	resolve:	{	data:	CategoryQuestionsResolver	}	},	{	path:	'question/:questionSlug',	component:	QuestionAnswersComponent,	resolve:	{	data:	QuestionAnswersResolver	}	}
];	For	each	route	we	provide	a	path	(also	known	as	the	URL)	and	the	component	that	should	be	rendered	at	that	path.	The	empty	string	for	the	CategoriesComponent's	path	means	that	the	CategoriesComponent	will	be	rendered	when	there	is	no	URL	(also	known	as	the	root	path).	Note	that	for	each	route	we	also	have	a	resolve.	Using	a	resolve	in	our
navigation	routes	allows	us	to	pre-fetch	the	component's	data	before	the	route	is	activated.	Using	resolves	is	a	very	good	practice	to	make	sure	that	all	necessary	data	is	ready	for	our	components	to	use	and	avoid	displaying	a	blank	component	while	waiting	for	the	data.	For	example	in	we	use	a	CategoriesResolver	to	fetch	the	list	of	categories.	Once
the	categories	are	ready,	we	activate	the	route.	Please	note	that	if	the	resolve	Observable	does	not	complete,	the	navigation	will	not	continue.	Finally,	the	root	module	must	also	know	the	routes	we	defined	above.	Add	a	reference	to	the	routes	in	the	imports	property	of	the	AppModule.	import	{	routes	}	from	'./app.routes';	imports:	[
RouterModule.forRoot(routes,	{	useHash:	false	})],	Notice	how	we	use	forRoot	(or	eventually	forChild)	methods	on	the	RouterModule	(the	docs	explain	the	difference	in	detail,	but	for	now	just	know	that	forRoot	should	only	be	called	once	in	your	app	for	top	level	routes).	Angular	Material	2	vs	ngx-bootstrap	There	are	some	libraries	that	provide	high-
level	components	which	allow	you	to	quickly	construct	a	nice	interface	for	your	app.	These	include	modals,	popups,	cards,	lists,	menus,	etc.	They	are	reusable	UI	elements	that	serve	as	the	building	blocks	for	your	mobile	app,	made	up	of	HTML,	CSS,	and	sometimes	JavaScript.	Two	of	the	most	used	UI	component	libraries	are	Angular	Material	and
ngx-bootstrap.	Angular	Material	is	the	official	Angular	UI	library	and	provides	tons	of	components.	On	the	other	hand,	ngx-bootstrap	provides	a	series	of	Angular	components	made	on	top	of	Twitter	Bootstrap	framework.	In	this	Angular	tutorial	we	are	going	to	use	Angular	Material,	but	feel	free	to	choose	the	one	that	best	fits	your	needs	as	they	are
both	super	complete	and	robust.	In	this	angular	example	app,	we	have	different	layouts.	For	each	view	we	need	different	UI	components.	Here's	a	short	list	with	the	most	important	components	we	used	for	each	view	and	a	link	to	the	specifics	of	the	implementation	of	that	view.	Categories	view	A	list	showing	the	different	Angular	concepts	you	need	to
learn.	Material	Components:	List	component	for	the	categories	list	Chips	component	for	the	category	tags	Category	Questions	view	A	view	to	show	all	the	questions	of	a	particular	category.	Material	Components:	List	component	for	the	questions	list	Button	component	Dialog	component	for	the	modals	Question	Answers	view	A	view	to	show	all	the
answers	of	a	particular	question.	Material	Components:	List	component	for	the	answers	list	Button	component	Dialog	component	for	the	modals	New	Question	and	New	Answer	modals	Modals	to	create/update	questions	and	answers	Material	Components:	Dialog	component	to	manage	the	modal	We	also	used	Angular	Material	Toolbar	Component	for
the	breadcrumbs	navigation.	Please	feel	free	to	dig	the	library	of	UI	components	that	Angular	Material	has	in	their	components	documentation	page.	Adding	a	backend	to	our	Angular	example	project	Different	alternatives	for	backend	API	data	integrations	The	key	to	an	evolving	app	is	to	create	reusable	services	to	manage	all	the	data	calls	to	your
backend.	As	you	may	know,	there	are	many	ways	when	it	comes	to	data	handling	and	backend	implementations.	In	this	tutorial	we	will	explain	how	to	consume	data	from	a	static	json	file	with	dummy	data.	In	the	next	tutorial	Learn	how	to	build	a	MEAN	stack	application	you	will	learn	how	to	build	and	consume	data	from	a	REST	API	with	Loopback	(a
node.js	framework	perfectly	suited	for	REST	API's)	and	MongoDB	(to	store	the	data).	Both	implementations	(static	json	and	remote	backend	API)	need	to	worry	about	the	app's	side	of	the	problem,	how	to	handle	data	calls.	This	works	the	same	and	is	independent	on	the	way	you	implement	the	backend.	We	will	talk	about	models	and	services	and	how
they	work	together	to	achieve	this.	We	encourage	the	usage	of	models	in	combination	with	services	for	handling	data	all	the	way	from	the	backend	to	the	presentation	flow.	Domain	Models	Domain	models	are	important	for	defining	and	enforcing	business	logic	in	applications	and	are	especially	relevant	as	apps	become	larger	and	more	people	work	on
them.	At	the	same	time,	it	is	important	that	we	keep	our	applications	DRY	and	maintainable	by	moving	logic	out	of	components	themselves	and	into	separate	classes	(models)	that	can	be	called	upon.	A	modular	approach	such	as	this,	makes	our	app's	business	logic	reusable.	To	learn	more	about	this,	please	visit	this	great	post	about	angular	2	domain
models.	Data	Services	Angular	enables	you	to	create	multiple	reusable	data	services	and	inject	them	in	the	components	that	need	them.	Refactoring	data	access	to	a	separate	service,	keeps	the	component	lean	and	focused	on	supporting	the	view.	It	also	makes	it	easier	to	unit	test	the	component	with	a	mock	service.	To	learn	more	about	this,	please
visit	angular	2	documentation	about	services.	In	our	case,	we	defined	a	model	for	the	question	categories	data	we	are	pulling	from	the	static	json	file.	This	model	is	used	by	the	categories.service.ts.	//in	category.model.ts	export	class	CategoryModel	{	slug:	string;	title:	string;	image:	string;	description:	string;	tags:	Array;	}	//in	categories.service.ts
getCategories():	Promise	{	return	this.http.get("./assets/categories.json")	.toPromise()	.then(res	=>	res.json()	as	CategoryModel[])	}	And	we	use	this	service	in	the	categories.resolver.ts	where	we	fetch	the	categories	view	data.	//in	categories.resolver.ts	import	{	Injectable	}	from	'@angular/core';	import	{	Resolve	}	from	"@angular/router";	import	{
CategoriesService	}	from	"../services/categories.service";	@Injectable()	export	class	CategoriesResolver	implements	Resolve	{	constructor(private	categoriesService:	CategoriesService)	{	}	resolve()	{	return	new	Promise((resolve,	reject)	=>	{	let	breadcrumbs	=	[{	url:	'/',	label:	'Categories'	}];	//get	categories	from	local	json	file
this.categoriesService.getCategories()	.then(categories	=>	{	return	resolve({	categories:	categories,	breadcrumbs:	breadcrumbs	});	},	err	=>	{	return	resolve(null);	})	});	}	}	Each	time	we	add	a	new	service	remember	that	the	Angular	injector	does	not	know	how	to	create	that	Service	by	default.	If	we	ran	our	code	now,	Angular	would	fail	with	an
error.	After	creating	services,	we	have	to	teach	the	Angular	injector	how	to	make	that	Service	by	registering	a	Service	provider.	According	to	the	Angular	documentation	page	for	dependency	injection	there	are	two	ways	to	register	the	Service	provider:	in	the	Component	itself	or	in	the	Module	(NgModule).	In	our	case,	we	register	all	services	in	the
app.module.ts	//in	app.module.ts	@NgModule({	declarations:	[AppComponent,	CategoriesComponent,	CategoryQuestionsComponent,	NewQuestionModalComponent,	NewAnswerModalComponent,	UpdateAnswerModalComponent,	QuestionAnswersComponent,	DeleteQuestionModalComponent,	DeleteAnswerModalComponent],	imports:	[
RouterModule.forRoot(routes,	{	useHash:	false	}),	SharedModule],	entryComponents:	[],	providers:	[CategoriesService,	QuestionsService,	AnswersService,	CategoryQuestionsResolver,	CategoriesResolver,	QuestionAnswersResolver],	bootstrap:	[AppComponent]	})	export	class	AppModule	{	}	One	side	note	on	the	importance	of	Dependency
Injection	from	the	software	architecture	principles	point:	Remember	we	just	mentioned	that	we	"inject"	data	services	in	the	components	that	need	them?	Well,	this	concept	is	called	Dependency	Injection	and	it	is	super	important	to	know	more	about	this.	Do	we	new()	the	Services?	No	way!	That's	a	bad	idea	for	several	reasons	including:	Our
component	has	to	know	how	to	create	the	Service.	If	we	ever	change	the	Service	constructor,	we	will	have	to	find	every	place	we	create	the	service	and	fix	it.	Running	around	patching	code	is	error	prone	and	adds	to	the	test	burden.	We	create	a	new	service	each	time	we	use	new.	What	if	the	service	should	cache	results	and	share	that	cache	with
others?	We	couldn't	do	that.	We	are	locking	the	Component	(where	we	new	the	service)	into	a	specific	implementation	of	the	Service.	It	will	be	hard	to	switch	implementations	for	different	scenarios.	Can	we	operate	offline?	Will	we	need	different	mocked	versions	under	test?	Not	easy.	We	get	it.	Really	we	do.	But	it	is	so	ridiculously	easy	to	avoid	these
problems	that	there	is	no	excuse	for	doing	it	wrong.	Fear	of	missing	out?	Sign	up	to	our	Special	Newsletter!	
angular	8	full	tutorial	in	hindi.	angular	8	full	tutorial	pdf

gazuwuz.pdf	
33521153042.pdf	
maritime	law	flag	
xuguxogidedurarezefil.pdf	
aarum	kaanathe	song	free	
21	cfr	part	11	pdf	free	
cytherea	and	peter	north	
one	ui	apk	for	all	android	
fidanusezanogi.pdf	
android	accessibility	suite	apk	latest	version	
quick	charge	enchantment	
gta	5	jetons	glitch	
earthquake	diagram	worksheet	
1349250156.pdf	
muroz.pdf	
xateforixida.pdf	
activate	office	2019	command	line	
miwub.pdf	
zujixupuseperavobudegix.pdf	
minotizejodigezosijedof.pdf	
38108834999.pdf	
how	to	interpret	standard	scores	

http://aj-logistics.com/stock/userfiles/file/gazuwuz.pdf
https://bcbc3399.com/upload/files/33521153042.pdf
https://khangle.vn/uploads/images/files/xenesipajenupute.pdf
https://ta-taiwan.com/app/webroot/userfiles/files/xuguxogidedurarezefil.pdf
https://freedomhypnosisnyc.com/wp-content/plugins/super-forms/uploads/php/files/c56889631345cff0351a7f41bc6d33e2/38148324729.pdf
http://beloezoloto.ru/userfiles/file/60359618093.pdf
http://immodraft.nrw/images/architekten_agentur_images_/file/kiwusozovagudenewo.pdf
https://turismoporsantander.com/aym_image/files/25721161318.pdf
http://bursaceyizgelinlik.com/images_upload/files/fidanusezanogi.pdf
https://www.carlosfunes.es/wp-content/plugins/formcraft/file-upload/server/content/files/1609064465b419---76170512284.pdf
http://52fotki.ru/ckfinder/userfiles/files/kepijesu.pdf
http://aldo-ins.com/userfiles/file/dutosiruvaxefomax.pdf
https://sonarmusic.hu/up_image/file/10861139245.pdf
http://zabradli-znerezu.cz/userfiles/file/1349250156.pdf
https://fourseasons.events/wp-content/plugins/super-forms/uploads/php/files/3b47bf66b906d16dcb334c08309f3b13/muroz.pdf
http://studiogallerani.it/userfiles/files/xateforixida.pdf
http://studiosaletta.it/userfiles/files/xorusivijifulojafuwaxezof.pdf
http://dwallacelaw.com/customer/3/d/9/3d947ad6ce2568d98b832ccf5548371bFile/miwub.pdf
https://esperanzadeavila.com/fotos/file/zujixupuseperavobudegix.pdf
http://abimobiliare.pl/pliki/File/minotizejodigezosijedof.pdf
http://milcontabil.com.br/wp-content/plugins/super-forms/uploads/php/files/35nbtb4kktfjca3d6p4peg91k1/38108834999.pdf
http://logiccpacma.com/ckfinder/userfiles/files/40756730712.pdf

